Oxytocinergic inputs to the nucleus of the solitary tract and dorsal motor nucleus of the vagus in neonatal rats

Author(s):  
Linda Rinaman
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jianhua Liu ◽  
Wenbin Fu ◽  
Wei Yi ◽  
Zhenhua Xu ◽  
Nenggui Xu

Acupuncture has a reflex regulation in gastrointestinal functions, which is characterized with segment. In the present study, the neural pathway of electroacupuncture (EA) at orofacial acupoints (ST2) on gastric myoelectric activity (GMA) in rats was investigated. The results indicated that EA at ST2 facilitated spike bursts of GMA, which is similar to EA at limbs and opposite to EA at abdomen. The excitatory effect was abolished by the transaction of infraorbital nerves, dorsal vagal complex lesion, and vagotomy, respectively. In addition, microinjection of L-glutamate into the nucleus of the solitary tract (NTS) attenuated the excitatory effect. All these data suggest that the dorsal vagal complex is involved in the reflex regulation of EA at orofacial acupoints on gastric functions and NTS-dorsal motor nucleus of the vagus (DMV) inhibitory connections may be essential for it.


2004 ◽  
Vol 91 (5) ◽  
pp. 2330-2343 ◽  
Author(s):  
Zhenjun Tan ◽  
Ronald Fogel ◽  
Chunhui Jiang ◽  
Xueguo Zhang

Galanin plays an important role in the regulation of food intake, energy balance, and body weight. Many galanin-positive fibers as well as galanin-positive neurons were seen in the dorsal vagal complex, suggesting that galanin produces its effects by actions involving vagal neurons. In the present experiment, we used tract-tracing and neurophysiological techniques to evaluate the origin of the galaninergic fibers and the effect of galanin on neurons in the dorsal vagal complex. Our results reveal that the nucleus of the solitary tract is the major source of the galanin terminals in the dorsal vagal complex. In vivo experiments demonstrated that galanin inhibited the majority of gut-related neurons in the dorsal motor nucleus of the vagus. In vitro experiments demonstrated that galanin inhibited the majority of stomach-projecting neurons in the dorsal motor nucleus of the vagus by suppressing spontaneous activity and/or producing a fully reversible dose-dependent membrane hyperpolarization and outward current. The galanin-induced hyperpolarization and outward current persisted after synaptic input was blocked, suggesting that galanin acts directly on receptors of neurons in the dorsal motor nucleus of the vagus. The reversal potential induced by galanin was close to the potassium ion potentials of the Nernst equation and was prevented by the potassium channel blocker tetraethylammonium, indicating that the inhibitory effect of galanin was mediated by a potassium channel. These results indicate that the dorsal motor nucleus of the vagus is inhibited by galanin derived predominantly from neurons in the nucleus of the solitary tract projecting to the dorsal motor nucleus of the vagus nerve. Galanin is one of the neurotransmitters involved in the vago-vagal reflex.


2001 ◽  
Vol 4 (3) ◽  
pp. 222-236 ◽  
Author(s):  
Jaleh Mansouri ◽  
Ashok Panigrahy ◽  
Susan F. Assmann ◽  
Hannah C. Kinney

Rapid and dramatic changes occur in cardiorespiratory function during early human life. Catecholamines within select brain stem nuclei are implicated in the control of autonomic and respiratory function, including in the nucleus of the solitary tract and the dorsal motor nucleus of X. Animal and adult human studies have shown high binding to α2-adrenergic receptors in these regions. To determine the developmental profile of brainstem α2-adrenergic binding across early human life, we studied brain stems from five fetuses at mid-gestation, three newborns (37–38 postconceptional weeks), and six infants (44–61 postconceptional weeks). We used quantitative tissue receptor autoradiography with [3H]para-aminoclonidine as the radioligand and phentolamine as the displacer. In the fetal group, binding was high (63–93 fmol/mg tissue) in the nucleus of the solitary tract, dorsal motor nucleus of X, locus coeruleus, and reticular formation; it was low (<32 fmol/mg tissue) in the principal inferior olive and basis pontis. Binding decreased in all regions with age: in infancy, the highest binding was in the intermediate range (32–62 fmol/mg tissue) and was localized to the nucleus of the solitary tract and dorsal motor nucleus of X. The most substantial decrease in binding (75%–85%) between the fetal and infant periods occurred in the pontine and medullary reticular formation and hypoglossal nucleus. Binding remained low in the principal inferior olive and basis pontis. The decreases in binding with age remained significant after quench correction. These data suggest that rapid and dramatic changes occur in early human life in the brain stem catecholaminergic system in regions related to cardiorespiratory control.


2007 ◽  
Vol 292 (6) ◽  
pp. R2136-R2143 ◽  
Author(s):  
Tzu-Ling Li ◽  
Lih-Chu Chiou ◽  
You Shuei Lin ◽  
Jing-Ru Hsieh ◽  
Ling-Ling Hwang

Immunoreactivity of leptin receptor (Ob-R) has been detected in rat dorsal motor nucleus of the vagus (DMNV). Here, we confirmed the presence of Ob-R immunoreactivity on retrograde-labeled parasympathetic preganglionic neurons in the DMNV of neonatal rats. The present study investigated the effects of leptin on DMNV neurons, including parasympathetic preganglionic neurons, by using whole cell patch-clamp recording technique in brain stem slices of neonatal rats. Leptin (30–300 nM) induced membrane depolarization and hyperpolarization, respectively, in 14 and 15 out of 80 DMNV neurons tested. Both leptin-induced inward and outward currents persisted in the presence of TTX, indicating that leptin affected DNMV neurons postsynaptically. The current-voltage (I–V) curve of leptin-induced inward currents is characterized by negative slope conductance and has an average reversal potential of −90 ± 3 mV. The reversal potential of the leptin-induced inward current was shifted to a more positive potential level in a high-potassium medium. These results indicate that a decrease in potassium conductance is likely the main ionic mechanism underlying the leptin-induced depolarization. On the other hand, the I–V curve of leptin-induced outward currents is characterized by positive slope conductance and has an average reversal potential of −88 ± 3 mV, suggesting that an increase in potassium conductance may underlie leptin-induced hyperpolarization. Most of the leptin-responsive DMNV neurons were identified as being parasympathetic preganglionic neurons. These results suggest that the DMNV is one of the central target sites of leptin, and leptin can regulate parasympathetic outflow from the DMNV by directly acting on the parasympathetic preganglionic neurons of the DMNV.


Sign in / Sign up

Export Citation Format

Share Document